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\Rapid melting and solidification of a semi-infinite substrate
Ssubjected to a high intensity heat flux over a circular region on

its bounding surface moving with a constant velocity is considered.
General expressions are developed for the coefficients in the fin-
ite difference equation governing the heat transfer in moving
orthogonal cuvilinear coordinate systems. These expressions are
reduced to their specific forms in terms of dimensionless nodal

Stemperature and enthalpy for a moving oblate spheroidal coordinate
system. Quasi-steady state conditions are assumed and the thermal
properties of the substrate in the liquid and solid phase are con-
sidered constant and equal. It is also assumed that the substrate,
pure aluminum used as example, melts and solidifies at a single
temperature. Temperature distributions in the molten region and
the adjacent heat affected zone are computed along with the liquid-
solid interface shape, its velocity and other important solidifica-
tion variables. Both uniform and Gaussian heat flux distributions
within the circular region are considered. The results are present-
ed in their most general form - in terms of dimensionless numbers
when possible. S ecific criteria for the melting of the substrate
are established. 'It is shown that the three variables, absorbed
heat flux q, the radius of the circular region a and the velocity
of the moving heat flux U, could be combined info two independent
variables. That i$, the-dimensionless temperature distribution in
the metal pool and the solid substrate remain the same as long as
the products qa and Ua or U/q are kept con-stant. The effect of
these variables on co--oling rate in the liquid and the ratio of temp-
erature gradient togrowth rate at the solid-liquid interface are
discussed using the aluminum substrate as example.
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I. INTRODUCTION

The availability of high power directed energy sources such

as the electron beam and different types of lasers has led to

the development of a number of new materials processing techniques

which exploit the unique characteristics of these sources. One

such process, the rapid surface layer melting and subsequent sol-

idification of metallic and semi-conductor substrates, appears

to have tremendous potential applications. In two recent papers

(1,2) we addressed the one and two dimensional transient heat

flow problems during rapid melting and solidification of the sur-

face of a semi-infinite substrate subjected to a high intensity

stationary heat flux on its bounding surface. In the present

investigation we extend the earlier findings to three-dimensional

heat flow on the surface of a semi-infinite solid subjected to a

moving heat flux. It is anticipated that the equations and sol-

ution method developed would be equally applicable to other met-

allurgical processes such as arc welding.

In general, most experiments with a directed energy source,

such as the continuous wave CO2 laser, involve scanning of the

source over the surface of the substrate. Analytical solutions

to simple moving heat source problems have previously been con-

sidered by Rosenthal (3). His analysis is for a solid substrate

which does not undergo a phase change. It is based on the notion

that if the dimensions of the substrate are large with respect

to the moving source, then the system approaches a quasi-steady

state; steady state prevails from the standpoint of an observer

located in and travelling with the source. The analytical solutions



of Rosenthal (3) have been extensively used in metallurgical

processes such as welding and surface hardening. However, these

solutions are only accurate at large distances from the source

and can not address the complex problem of melting and solidifi-

cation which is the subject of this investigation.

In this paper we extend the mathematical technique developed

and used in the previous two-dimensional transient heat flow

problem (2). The oblate spheroidal coordinate system is used

again, however, the mathematical expressions and computer method-

ology developed assume the existence of quasi-steady state while

the coordinate system is in motion.
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II. PROBLEM STATEMENT AND SOLUTION APPROACH

We consider a high intensity heat flux over a circular

region on the bounding surface of a semi-infinite solid moving

with a constant velocity, U, in the y-direction in cartesian

coordinate system, Figure 1. The absorbed heat flux is high

enough to cause melting and subsequent solidification of the sur-

face layer. Temperature profiles in the molten region and the

adjacent heat affected zone, as well as the important melting and

solidification variables of the surface layer are to be determined.

The analysis is based on the assumption that a quasi-steady state

is established, which is to say that the system appears to be

steady state as viewed by an observer located at the center of

the circular region and travelling with the heat source. We thus

transfer the coordinate system from the semi-infinite solid to the

center of the heat source. The surface outside the heated region

is considered adiabatic. The thermal properties of the solid and

the liquid phases are considered to be constant and equal to one

another. Finally, it is assumed that the workpiece melts and sol-

idifies at a single temperature.

The generalized expressions previously derived (4) for

the determination of the coefficients in the finite difference

equations governing the stationary heat transfer problem within

discretized spatial domains are extended to account for the

motion of orthogonal curvilinear coordinate systems. These ex-

pressions are then reduced to their specific forms for a moving

oblate spheroidal coordinate system which is a "more natural"

coordinate system for this problem geometry. The finite

................................ .. 1
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difference equations are rewritten in terms of dimensionless

nodal enthalpy and temperature, in a manner similar to that

previously described (2,6). to permit numerical solution of

the multidimensional, discrete temperature-phase change prob-

lem. In this way, both dimensionless temperature and enthalpy

are used to formulate a single energy conservation equation for

each discretized spatial domain regardless of whether it is in

the solid state, the liquid state or contains the liquid-solid

interface. Finally, the quasi-steady state temperature distri-

butions in the molten region and the adjacent heat affected

zone are computed along with the liquid-solid interface shape,

its velocity and other important melting and solidification var-

iables.

I
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III. MATHEMATICAL DESCRIPTION

The generalized form of the heat condOction equation in

stationary orthogonal curvilinear coordinate system (u1 . u2 , u3 )

has previously been derived. For a volume element moving in

space with velocities vl , v2 and v3 this expression can be ex-

panded to include conduction of heat in and out of the volume

element due to motion:*

k I h BT + k2h BT ] k 3h aT

1 h1  1 h2 2 3 h3 3
(1)

+ P.h -L (hpC T) - pC [ v1  +T h
at p p 1 au, v2 au + v3

aT
*au 3"3

Where the scalar factors (metric coefficients) relating the

curvilinear coordinate system to the cartesian system are those

previously defined ( 5):

/Ii =L + (...Y)2+ (aZ) . 1,2,3 (2)
1 U i a " i

and

h = h1 , h2 * h 3  (3)

The velocities in the two coordinate systems are related by

(3)
=1 ax 1 ,jy 1(az)= -T v  + v + ( 4

v1  h. i .9L + u. h~) 1 ui i au i z;- (4)

i = 1,2,3

*All the terms in the equations are defined in the Nomenclature.
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The arc lengthso areas and the volume of the element in the

curvilinear coordinates are related to the cartesian by:

ds i  - hidu i  i 1,2,3 (5)

dA. hth du duk i,j,k = 1,2,3 (6)
di = 3k ujdu

dV = h du, du 2 du3  (7)

Finally, P in equation (1) denotes source strength per unit

volume.

Taylor series expansion of equation (1) about an arbitrary

discretized domain in space centered at a node at (i,j,k) can

now be carried out to put the equation in finite difference form.

The subscripts i,j and k indicate the finite discretization of

space in the u,, u2 and u3 directions, respectively. The change

in respective coordinate values between successive nodes are

AuI Au2 and Au3. If terms of the order of Au3 and higher are

neglected, the following expressions are obtained.

k h kI h Ti+ Jk + 2 jk ,2T k

hi h I (AuT)

t1 , k

(8)

+ kih Ti+l,j,k - T i-l,jk3

+ ~l h i,j,k

P.h = [P.hJi,j,k (9)

[(PCp T ) i, k - (PCpT)i,j,k (10)
5t (PCph T ) h At ]

,I~



where the superscript refers to the previous time level. 7

pc~ -- I i+l,j,k - Ti...,J,k
pp h--Vau ph 1 h I  • 2Aul

l,j~k (11)

Similar expressions to (8) - (11) are then written for u2

and u3. Substitution of all the finite difference approximations

in equation (1) yields the coefficients to the various nodal

temperatures:

A h k h PC 1hv

1 1uh 1 h V Tu u3 1

ijk

+ k2 h I a k2h 1 pC hv
- ZAu (-T 2 ( 2) Til22A 2 2 h2  2A2 ~j.j,

k i,j,k
+ k3h 1 a k3h I pChV)(

2 - 2 u -. - 2Au h Ti j k l 1
3h2

i,j,k

+ k1 (1) 1 k ITih+
2~- +2u u 2 + 2Au1  hl Ti+l j,k
hIAu 1  T UT-1 hj I

+ k 2h + _ 1 k 2h 1 Ih T]12

2 2 -u2 h-~ iP
2  (12)h2 U2 h2  Ti-julk

i ,j,k
+ k3h 

+  I ap ( k) 3h +-  I-. F2 - - -. -u h3  ) Tijk+l

2itj~k
[~ A AU k h kL hC

h1A 1  2 2 3 3j

i,j,k i,j,k

+ ~h+ (hPCp)TO] 0
At I

i,j,k
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Application of the general expression (12) to a moving

oblate spheroidal coordinate system located at the center of

the heat flux and travelling with the source is now considered.

The cartesian and the oblate spheroidal coordinate systems are

shown in Figure . The heat flux is applied over a circular

region of radius a in the x-y plane and is travelling in the

y-direction with constant velocity U.

y 
(13)

V MV = 0
x z

The thermal properties are considered to be uniform iso-

tropic and equal for the solid and liquid phase. Quasi-steady

state conditions are assumed - terms involving time in equation(1 2)

are zero.

The relationships between the cartesian and the oblate

spheroidal coordinates are:

x = a coshn sinF cost

y = a coshn SinE sine (14)

z = a sinhn cosE

The control volume is centered about an arbitrary point

(, J, k) in space and is moving with a velocity U in the pos-

itive y-direction. i, j and k indicate the finite discretiza-

tion of space in the n,t and 0 directions, respectively.

u1  = u2  = n, u3  
= 4

(15)v=v, v2 = vr v3 v¢
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The scalar factors (metric coefficients) for the oblate

spheroidal coordinates determined from equations (2) and (14) are:

h h = aVcosh'n - sinI '

h = a coshn sine (16)

h = h hh = a3 (cosh2n - sin 24) coshn sine

The interrelationship between vector components (velociti as)

in the two coordinate systems from equation (4) are:

= V (+) v + 1
h Iall x h an y h fla

= L ax + L (AX) V + L f)z

Substituting eqOations (14), (15) and (16) in equation (17)

and performing the indicated operations yields:

vn = U sinhn sinE sin,

,coshzn- sin 2{

v = U coshn cost sinO (18)

Vcoshzn - sin2E

v = U cosP

The scalar factors (16) and the velocity components (18) are

now used in the general expressions for the finite difference

coefficients (12). Once the appropriate operations are carried out

expression (12) can be put in a more useful form for the problem

at hand.
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Cs Tij k = C1  Til,j,k + C2 Ti+lj,k + C3 T i,j-l,k + C4  
T i,j+l,k +

C5  
T i,j,k-1 + C6  Ti,j,k+l - C7  Til,j,k + C8  T i+l,j,k -

C9 T i,j-l,k + C10 Ti,j+lk - Cll Ti,j,k-l + Cl2 Ti,j,k+ l

Pa2 (cash2ni - sin 2 E.)

K

The coefficients in equation (19) are:

12 n 4 2ATtanhni

+ - cot&j.3 ,4 = -

C I (cosh 2n. sin 2E) 
(20)

5,6 cash2 1 sin 2 J 

C7 = C 8 2k An s 1inhi sin3j sin k

a*-p-p- coshni cosj sin~k
C9 = C1 0  2k At

aUpC (cosh 2n. - sin 2'.)C CPI cos
C11 =  12 - 2k A coshn i  sinE I k

=+2 + 1 (cash 2,1i - sin 2 .) ]

n=l n Ki, E T cashT, n

In the above each coefficient has been divided by (ak coshI.

sinej AnAtAf).

The finite difference representation of the heat conduction

equation can now be put in its equivalent enthalpy form using a

modified version of previous notation ( 2 ) for dimensionless nodal

I .- .. .. ..T ... .. .1... ... -... .. .... ... .. ................ ,,



enthalpy, p, and dimensionless nodal temperature, 8. These two

dependent variables are defined as:

H H
p- p (H- Hs) dV

v A H (21)

C (T - TM)

In general H in equation (21) refers to the specific enthalpy

of the discritized space volume and assumes different forms when

the node is in the liquid, the solid or the liquid-solid region.

H is the specific enthalpy of the solid at its melting point.s

In the solid region the dimensionless nodal enthalpy, , is

negative and is equal to the dimensionless nodal temperature:

M= <= ( T 0 (22)

AH s

In the superheated liquid region:

C (T - TM)
= 1 + P M) > 1.0 (23)AH s

A discretized space volume containing the liquid-solid inter-

face is at the melting point of the material:

0 ( i < 1 .0 and 0 = 0 (24)

The value of ' is equal to the weight fraction of the element

which is in the liquid state, f2 .
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The appropriate forms of equation (21) for a discretized

space domain in the solid or liquid region, equations (22) or (23)

are substituted into equation (19). After some manipulation and

multiplication by different factors for the following common equa-

tion is bbtained for both the solid and the liquid.

Cs i,j,k = l 1 i-l,j,k + C2 i+l,j,k + C3 *i,j-l,k + C4  i,j+l,k

+ C5  ei,j,k- + C6  ei,j,k+l " C7 ei-l,j,k

8 i+l,j,k - C9  
0 i,j-l,k + C10  i,j+l,k

(25)
- C1 l .,j,k-l + C12  i,j,k+l

+ Pa2 (cosh'ni - sin 2 .)

k AH s"

The coefficients C1 to C1 2 and Cs are those defined in ex-

pressions (20).

An alternate approach to the general formulation of the prob-

lem developed here, which resulted in equations (19) and p0), is to

apply an energy balance to an arbitrary moving control volume of

finite size with a total source strength PAV centered about node

i,j,k in oblate spheroidal coordinates. This approach, described

in detail in the Appendix, is very useful because; (a) it verifies

the general formulation of equation (1) developed in this investi-

gation, and (b) it renders improved physical interpretations of the

various coefficients derived for equations (19) and (20) and the

boundary conditions described in the next section.
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IV. BOUNDARY CONDITIONS AND SOLUTION OF

THE FINITE DIFFERENCE EQUATIONS

The boundary conditions are derived based on the following

assumptions.

The absorbed heat flux in the circular region of the bound-

ing surface (z = 0, x-y plane) is in general a function

of distance and time, q=q(r,t) where r = V7+ yZ. In this

paper the problem is solved for the two special cases of

uniform and Gaussian distributions of the absorbed heat

flux within the circular region. Equation (25) is then

subject to the following boundary conditions.

I. n = 0 ,0 4 'r/2 ' "- 0 (26)

The first node at this boundary is at i = 1, nI = A, there-

2

fore, the surface located at i - 1/2 is coincident with this boun-

dary of symmetry:

Qi-I/2,j,klil = 0 , C1 =0 (27)

Similarly, the top surface is parall'el to the moving direc-

tion, hence:

C7 = 0 (28)

In general, the heat flux in the circular region on the bound-

ing surface is incorporated in the term involving P in equation

(25).

E ij+AE/2 O+AO/2

af q(E) sin(2t) d.f doF,-AF /2 *-A€/2 (29)

= rate of heat generated C 
(

unit volume AV
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where AV is the volume of the discretized space domain.

AV = hAnAIAE = a3 (cosh2 ni - sin 2c.)coshn i sin i AnAEAO (30)

For case (a) q = constant

P is calculated from equations (29) and (30). Substitution of this

finding in the last term of equation (25) leads to the following

expression:

a q cosEj sin(A )

k coshniAnAx AH s (31)

-2 sin2 j (32)
For case (b) q = q0 e

and the last term of equation (25) becomes:

-2sin 2 ( - ) -e -2 sin2(E +E) ]  C
q~ 0-~ 2 ei2 Cp- (33)

4 k coshn i sinE. ArA AH s(

II. n > 0, 0 .< E .< w/2, / = -t/2, HT = 0, P = 0

(the negative y portion of the y-z plane, x = 0) (34)

Because of problem symmetry about the y-z plane the plane defined

by *=-7r/2 will represnet a zero flux boundary. Since the first

node at this boundary is at k = 1, *I = A4/2, then the surface

located at k - 1/2 is coincident with this boundary of symmetry:

Qi,j,k-I/2I , C5  = 0 (35)

Similarly, this surface is parallel to the moving

direction; hence:

C11 = 0 (36)
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+ > , 0 .< , € = +it 0 0, P = 0 (37)

(the positive y portion of the y-z plane, x=0)

By using a similar reasoning to that given above we must set

C6 = 0 , C12 = 0 (38)

IV. ", 0 < E < n/2, -7/2 < < Tr/2 , P = 0 (39)

Far away from the circular region (for the-problem at hand,

n- 10):
C (TM  To

ei,j,k = *i,j,k = AH M 0  (40)

V. n > 0, = 0, P = 0 (41)

(along the z-axis, x = 0, y = 0)

The area of the surface located at j - 1/2 along this

boundary is zero:

C3  = 0 , C9  = 0 (42)

VI. n > 0, = r/2, -7r/2 < 1 < Tr/2, P = 0 (43)

The surface on the x-y plane outside the circular region

is adiabatic:

Qi,j+1/2,k = 0 , C4 = 0 (44)

j=Max

The top surface is parallel to the moving direction, hence:

CI0 = 0 (45)

The system of quasi-steady state algebraic equations,

equation (25), in the moving oblate spheroidal coordinates

were solved using an iterative method. The computer logic

j
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presented below closely follows that previously described

for the two-dimensional transient heat flow problem for

stationary heat flux applied in the circular region on the

surface of a semi-infinite solid (2). However, the quasi-

steady state nature of the problem has eliminated time deriv-

atives from the heat flow equation.

The solution is started by initially assigning a temper-

ature of To to the semi-infinite solid. Then, by using equa-

tions (22) to (24) the left hand side, L.H.S. of equation (25)

is calculated using the boundary conditions by repeated point iter-

ation throughout the mesh in a definite order a number of times

until the convergence criteria is met. The following logic is

used in the sequence of calculations.

If )i,j,k < 0 the element is in the solid and right hand

side, R.H.S., of equation (25) is less than zero.

R.H.S.
C5j,k - C (46)

As the calculation is repeated for the next nodal point,

the value of e in the previous nodal point in the mesh is set

equal to that calculated from equation (4"6). On the other hand,

if 0 ' *i,j,k 4 1.0 the element contains the liquid solid inter-

face and the value calculated from equation (46) gives the

fraction of liquid in the volume element. The value of e for

this nodal point is set equal to zero in the next iteration step.

Finally, if i,j,k > 0 the element is in the superheated liq-

uid region and the values of 0 and of e for this nodal point

becime that given by equation (23).

The convergence criteria is tested by comparing the new
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value of Oi,j,k with the old guess value:

*ij~k (new)- ij,k (old)l4,1-4
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V. RESULTS AND DISCUSSION

The equations and the computer logic developed were used to

calculate the quasi-steady state temperature distribution in an

aluminum substrate subjected to both uniform and Gaussian moving

heat flux distributions. The results are presented in their most

general form, in terms of dimensionless numbers when possible,

in order to establish general trends between the process vari-

ables and the important melting and solidification parameters.

The sequence of the presentation is as follows. First, the

steady state temperature distributions due to a stationary heat

flux acting over a circular region of radius a are discussed and

the results are compared with the transient heat flow calculations

of the previous paper(2). It is shown that the criteria developed

earlier, between the product of the absorbed heat flux and the

radius of the circular region qa and the steady state temperature

at the center of the circular region, are equally applicable to

the problem on hand. A significant departure from the earlier (2)

calculations is the assumption that the conductivities of the

liquid and the solid phases are equal. Thle effect of this assump-

tion on the steady state temperature distributions is discussed.

Second, the effect of moving the heat flux in the y-direction with

a dimensionless velocity Ua/2a on the temperature distributions

and the solidification parameters are discussed in detail for both

uniform and Gaussian heat flux distributions.

The properties of aluminum used in the calculations are listed
in Table I.
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1. Steady State Tenperature Distributions

Stationary Heat Flux

Figure 3 shows a general plot of the data obtained in the previous

study (2). The curve associated with the vertical axis on the

right side of this Figure shows that there is a minimum product

of qa required if the center of the circular region on the surface

of the substrate is to reach a given temperature, e.g. the vapor-

ization temperature of the substrate. That is, for very small

values of a/2/a-t, long interaction times, the temperature at this

location approaches its maximum steady state value. Again, the

term AHst/C p in the numerator on the right hand vertical axis of

Figure 3 denotes the equivalent temperature change for the melt-

ing of the substrate.

For the aluminum substrate, the minimum values of qa z 1.45 x

1O5 W/m and qa z 2.3 x lO5 W/m are deduced from Figure 3 for a

solid surface temperature T(O,O,O) = TM and for the initiation of

surface melting, respectively. These values are identical to

those of the previous calculations (2). On the other hand, the

minimum value of qa Z 6.4 x 105 W/m deduced for the center of the circular

region to reach the vaporization temperature is larger than that

calculated earlier because the assumed higher conductivity of the

liquid permits faster diffusion of heat away from the heat source.

Figure 4 shows the effect of different thermal conductiv-

ity values on the location of the liquid-solid interface when

steady state prevails. Note that a higher liquid conductivity,

while the conductivity of the solid remains the same, results in

a larger metal pool, higher qa value, if the center of the circu-

lar region is to reach the vaporization temperature.
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The steady state temperature distributions of a stationary

heat source are of interest because this is the problem geometry

as the velocity of the moving heat source approaches zero. Fig-

ure 5 shows the shape and location of several isotherms, includ-

ing the liquid-solid interface, in an aluminum substrate for two

different values of the product qa, These are steady

state isotherms and the center of the circular region has

reached maximum temperatures Tv and 2130K for ga = 6.4 x 105

W/m and qa = 5 x 105 W/m, respectively. The temperature distri-

butions remain the same in these dimensionless plots for all

values of _ and a as long as the product qa is kept constant.

Figure 6 shows the effect of increasing the product oa on

the steady state location of the liquid-solid interface. The

associated maximum temperature at the center of the circular

region is listed on each curve. The melt pool becomes deeper

and hotter as the product of the uniform absorbed heat flux and

the radius of the circular region increases. Furthermore,

ratio of the melt width to the melt depth is larger than one

and increases with decreasing value of the product qa.

Figures 7 and 8 show the actual temperature distribu-

tions in the melt pool and the solid along the z-axis and on the

z = 0 plane, respectively. As anticipated, temperature gradients

along the z-axis increase with increasing values of the product

_ and decrease with increasing distance from the surface of sub-

strate. On the other hand, symmetry on the z=O plane requires a

zero temperature gradient with respect to the x or the y axis at

the center of the circular region. Note that the temperature
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gradients at the edge of the pool on this plane increase with

decreasing values of the product qa. This information will be

of interest when relationships between cooling rates and process

variables are discussed in the moving heat flux problem geometry.

2. Quasi-Steady State Heat Flow-

Moving Heat Flux

A. Uniform Heat Flux

An important initial finding of this investigation was that

the three variables, absorbed heat flux _, the radius of the cir-

cular region a and the velocity of the moving heat flux U, could

be combined into two independent variables. That is, the dimen-

sionless temperature distribution in the liquid metal pool and the

solid substrate remain the same as long as the products qa and Ua

or Y/g are kept constant while the individual values of the three

variables are varied. Consequently, the data is presented herein

in a general form, covering a large range of process parameters,

in terms of the product qa or U/q and the dimensionless variable

Figure 9 shows the dimensionless temperature distribution

along the y-axis for different values of Ua/2a. For small val-

ues of Ua/2a ,.0.003 the heat flux is moving very slowly across

the substrate in the y-direction and the temperature distribu-

tions are almost, but not exactly, identical to those shown in

Figures 5 to 8. That is, there is little distortion of the

melt pool and it remains almost symmetrical as it travels across

the substrate. On the other hand, increasing the dimensionless

velocity results in increasing distortion of the metal pool - the
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maximum temperature along the y-axis shifts toward the tail end

of the pool. The data in Figure 9 permits determination of temp-

erature distribution along the y-axis for a wide range of process

variables. For example, for a radius of the circular region

a = 400pm and qa = 6.4 x 105 W/m the maximum temperature reached

at steady state, U = 0, was the vaporization temperature of alum-

inum. The maximum dimensionless velocity Ua/2a \vl.O in Figure 9

translates into an actual velocity of ru 0.42 m/s, a temperature

T(0,0,0) e ,2400K and a maximum temperature, displaced from the center

of the circular region, Tmax = 2540K. Changing the product qa to

4.1 x l05 W/m while Ua/2a is kept constant, results in a signifi-

cant reduction in the temperature at the origin T(0,0,0) %1510K -

compare this with the steady state value of 1730K in Figure 6.

Examples of the shape and location of several isotherms,

including the liquid-solid interface, for given values of the

products qa and Ua/2a are showr in Figures 10 and 11. Figure 10

shows a side view, plane x = 0, while Figure 11 shows a top view,

plane z = 0. The dinensionless velocity Ua/2( = 0.75 would, for

example, translate into actual velocities of 0.1 m/s and 1 m/s for

radii of the circular region of "1260pm and m-126pm, respectively.

The corresponding absorbed uniform heat fluxes that result in qa9

5 8 29 26.4 x 10 W/m are o ". 5.1 x 108 W/m2 and q ' 5.1 x 10 W/m2 ,

respectively. Figures 10 and 11 also show significant shifts in

the geometry of the isotherms to the trailing end of the moving

heat source. Also, the isothermal surfaces become increasingly

distorted with increasing temperature in the liquid metal pool. A

better indication of these observations can be noted in Figure 12.

I
t,
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This Figure shows composite vievs of the isotherms in Figures 10

and 11 along with side and top views of the isotherms when the

product qa is the same but the heat source is not moving - the

steady state temperature distributions when no further melting or

solidification occurs. It is interesting to note that due to the

high conductivity of the aluminum substrate the distortions in the

isotherms are not nearly as pronounced as those expected in lower

conductivity materials such as iron or nickel. This point was

clearly demonstrated in the moving point source calculations of

Rosenthal (3).

Figures 13 to 16 show the effects of changing the variables

qa and Ua/2 on the geometry and location of the liquid-solid inter-

face - the liquid pool. First, it is evident that there is little

distortion of the pool at low velocities. Second, increasing

the product Ua/2 results in a corresponding decrease in maximum

pool depth. Third, the geometry of the pool is more speherical

at higher products of qa - its width to depth ratio increases

with decreasing values of qa. Finally, shallower pool geometries

are less affected by changes in the dimensionless velocity.

The effect of changes in the values of qa and Ua/2oz on the

cooling rate in the liquid at the solid-liquid interface, GL R*

and the variation of this cooling rate along the different axes of

the cartesian coordinates are shown in Figures 17 and 18.

These are calculated cooling rates during solidification of

the trailing half of the metal pool. Heating and cooling rates

from the point of view of a stationary observer located anywhere

*GL and R are the temperature gradient in the liquid and the solid-
liquid interface velocity perpendicular to the metal pool surface,
respectively.
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in the heat affected zone of the substrate can similarly be deter-

mined. The cooling rate, GL*_, can be alternatively described as

the product of U.aT/3y, where 3T/3y is the y-component of the temp-

erature gradient in the liquid at the liquid-solid interface. The

cooling rate is a maximum along the y-axis and its value for a

given radius of the circular region increases with increasing val-

ues of the ratio U/q. This is clearly evident in the plots of Fig-

2ures 17 and 18 - note the values of GL-R x a at z/a = x/a = 0.

This fact can also be deduced from the steady-state temperature

distributions in Figure 8. The temperature gradients at the solid-

liquid interface increase with decreasing values of uniform absorbed

heat flux a.

For given values of qa and Ua/2a the cooling rate continuously

decreases toward the edges of the metal pool, Figures 17 and 18.

This is expected since both the temperature gradient in the y-direc-

tion and thesolid-liquid interface velocity perpendicular to itself reach

a finite but minimum value at these locations. Examples of cooling

rates that are readily calculated from these Figures are as follows.

Assume a uniform heat flux of q = 1.2 x l09 W/m2 absorbed over cir-

cular region of radius a = 250pm is moving with a velocity U nu 0.5

mis, qa , 3 x 105 W/m and Ua/2a u 0.75. The calculated cooling

rates from Figures 17 and 18 at y/a = 0, x/a = 0.8 and z/a = 0.4

are ,. 9 x 106 K/sec, ". 3.7 x 106 K/sec and '. 8 x 104 K/sec, respec-

tively.

The ratio of the temperature gradient in the liquid at and

perpendicular to the solid-liquid interface divided by the solid-

liquid interface velocity perpendicular to the melt pool during

,'lidification, GL/R ,  is a measure of the stability of a planar I.
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interface and its progressive breakdown into cellular and dendri-

tic solidification modes, This parameter is plotted versus the

z/a and x/a axis for different values of the variables qa and

Ua/2a in Figures 19 and 20, respectively. The data clearly indi-

cate that the minimum GL/R value consistently occurs along the

centerline of the moving pool on the y/a axis. The interface vel-

ocity at this location is in the y-direction and assumes its maxi-

mum value of U. The temperature gradient GL in this location

increases with decreasing values of the ratio UqZ, increasing uni-

form absorbed heat flux, for reasons already discussed. Therefore,

the ratio GL/R along the y-axis increases with decreasing g and

increasing velocity U.

It is important to note that as one moves along the back of

the pool on the y = 0 plane from z/a = 0 toward the bottom of the

pool the interface velocity vector both rotates and changes in

magnitude - it starts out at its maximum value of U pointing in

the positive y-direction and continuously decreases to its

minimum, small but finite, value at the maximun pool depth

pointing almost in the negative z-direction. It is thus clear

why the GL/R increases with increasing distance down the back

of the pool, increasing z/a, and assumes its maximum value at the

maximum pool depth, Figure 19.

In a similar manner, simultaneous rotation and decrease in

magnitude of the interface velocity vector occurs in the z = 0

plane as one moves from the back to the side of the pool. This

explains the increasing GL/R values with increasing distance along

x/a in Figure 20.
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Finally, in both Figures 19 and 20 the value of GL/R decreases

with increasing ratio of U/q at constant a or increasing qa at con-

stant Ua/2a. These trends are readily explained by following the

same reasoning as that presented above for the cooling rate.

B. Gaussian Heat Flux

The effect of changing the heat flux distribution from a top

hat (uniform) to a Gaussian was investigated. As previously noted, (2),

if the total absorbed power in the circular region, Q, is identical

for the uniform and the Gaussian heat flux distributions, then the

following relationship is readily deduced:

q 21 (48)quniform 2.313

where q0 is the absorbed heat flux at the center of the circular

region in the Gaussian distribution.

Examples of calculated liquid-solid interface locations for

the Gaussian heat flux distributions are shown in Figures 21 and 22.

The product qoa/2.313 nu 4.65 x 105 W/m resulted in a maximum steady

state T(0,0,0) = T for the case of a stationary heat source. Thisv

value is lower than that for the uniform heat flux due to the high

concentration of absorbed power at the center of the Gaussian dis-

tribution. The liquid-solid interface for small values of the

dimensionless velocity Ua/2 is symmetrical in both the y = 0 and

z = 0 planes, Figures 21 and 22, respectively. For a given temp-

erature in the center of the circular region the metal pool is

shallower for the Gaussian heat flux distribution - compare the

solid curve for Ua/2a nu 0.03 in Figure 21 with the curve for
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qa = 6.4 x 105 for the same dimensionless velocity in Figure 13.

This is expected since the total power absorbed in the Gaussian

distribution is lower.

Decreasing the product q0 a/2.313 results in colder and shal-

lower melt pools while increasing the dimensionless velocity

shifts the trailing end of the pool toward the negative y-axis.

These observations are in line with previous findings for the

case of uniform heat flux. It was also found that motion of the

heat source has a more pronounced influence on the melt tempera-

tures than in the previous case. For example, increasing the

dimensionless interface velocity to Ua/2a ". 0.75 reduced the temp-

erature at T(0,0,0) from Tv to \,1600K for the value of q0a/2.313

4.65 x l05 W/m.

Finally, general trends relating cooling rates and GL/R values

are similar to those previously discussed for the case of uniform

absorbed heat flux distribution.

VI. SUMMARY

The three-dimensional temperature distributions in the melt

pool and the adjacent heat affected zone of a somi-infinite sub-

strate subjected to a moving directed high energy source can be

readily determined with the generalized formulation of the heat

flow equation in orthogonal curvilinear coordinates coupled to

an enthalpy model. While numerical computations are presented for

an aluminum substrate subjected to moving uniform and Gaussian

heat flux distributions, the equations developed could be equally

applicable to a range of metallurgical processes previously treated

with the moving point source equation. It is shown that if the two
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independent variables qa and Ua/2t or U/q are specified, the dimen-

sionless temperature distributions in a given substrate material

remain the same. Shortcomings of the model include the use of con-

stant thermophysical properties and the fact that convection in the

metal pool is not taken into consideration except by arbitrarily

increasing its thermal conductivity. On the other hand, the gen-

eral trends that can be deduced for a given energy source and sub-

strate material should permit a more systematic approach to the

variation and control of the process variables in order to achieve

the desired heat flow conditions during melting and solidification.
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APPENDIX

An alternate method to the general formulation of the finite

difference representation of the heat conduction equation in moving

orthogonal curvilinear coordinate system, equation (1), is con-

sidered here. In this method an energy balance is applied to a

control volume of finite size in oblate spheroidal coordinates

moving with velocities vn , v E and v, see Figure 2. The resultant

energy balance is approximated using finite differences and is

shown to converge to an identical formulation as that given in

equations (19) and (20). This approach is used to both verify the

general formulation of equation (1) developed in this investigation

and to render improved physical interpretation of the various coef-

ficients given in equation (20).

The moving control volume element about a point (17,j,k) is

illustrated in Figure 2. The energy balance for this volume element

having a total source strength of PAV is carried out by considering

the total rate of heat transfer through each surface by conduction

and due to the motion of the volume element.

Let Q and Q" denote the rate of heat transfer entering or

leaving the volume element by conduction and by motion of the vol-

ume element, respectively. The energy balance for the quasi-steady

state case under consideration is given by:

(Qi-1/2,j,k - Qi+1/2,j,k )  + (Qi,j-1 /2,k - Qi,j+ /2,k)

+ (Q i j ,k- I/ 2 - Qi, j ,k+1/2 )  +  (Q-1:+1/ 2,j ,k Q -I:-1/2,j , k (Al)

+ M ) + (Q% Q
+ i,j+1/2,k - Q ,j-/2 + i,j,k+I/2 Qi,j,k-/2 )

+ PAV 0
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In what follows the values of Q and Q" for the 1-1/2 and 1+1/2

faces are evaluated as examples. All the other terms in equation

(Al) can then be similarly obtained. It is shown that the sum of

all these terms, after appropriate nanipulations, results in equa-

tion (19) with the coefficients defined in expression (20).

Qi-1/2,j,k = -k (Ti,j k - Ti-lj k) (A2)
(AS )i~/

Appropriate substitutions of equations (5) to (7) and (16) into

equation (A2) and some manipulation gives:

Qi-/2,j,k - Cl(Ti,j,k - Ti_l,j, k) akcoshnisiri5 AnAEA (A3)

Similarly,

Qi+/2,j,k - C2 (Ti+lj,k - Tijk) akcoshnisinjAnA A (A4)

The coefficient C, and C2 are those defined in expressions (20).

Similar expressions to (A3) and (A4) are readily developed for the

rates of heat transfer through the other four faces of the volume

element due to conduction.

The rate of heat transfer entering the i-1/2 face due to the

motion of the volume element is:

Q'=pC T AA (A5)-I/2,j,k p i-I/2,j,k i-1i(2)/2

Substitution of equations (6), (16) and (18) into equation

(A5) gives:

aUpC sin sin( k  sinhi-1 /2coshni1./ 2-l/2,j,k kAn i-I/2,j,k ] s naY n ( cosh

•akcoshnisin~jAnAA¢ (A6)
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aUpC psin sin nk
Q -/2,j,k n (T i-1 /2 ,j,k) - akcoshnlsi nArA0

cosh2ni 
An]

coshni (

Similarly:

aUpCpsinE jsin k (T ) * akcoshnisin AnA AE

k+t/2,j,k rn i+1/2,j,k

s ji cosh2ni An] (A8)
[sinhni + coshni A

Subtraction of equation (A7) from (A8) gives:

_ aUpC sin inE k * akcoshnisinE AnA&AO

-+l j k " -I/2,j,k k

cosh2n
2anni (Ti+ljk - Tillk) + coshni(T )(A9)I i i  ijk I ...

Substituting equations (A3), (A4), (A9) and similar terms for

the other four faces into equation (Al) and dividing both sides by

akcoshnisin-j ArIAEA

gives an identical equation to expression (19). Note that the sum

of the second terms inside the brackets of equation (A9), the coef-

ficient to T i,j, k  becomes zero in equation (Al). This essentially

implies that the sum of the combination of area and velocity terms

multiplied and differentiated with respect to each axis is zero or

TE0 (Al0)

n=l au h 1

which was the a priori assumption made in the derivation of equa-

tion (I).
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NOMENCLATURE

a radius of the circular region, m or pm

A area of the element

C integration constant

Cp specific heat, JKg-IK
l

f fraction liquid

GL temperature gradient in the liquid at the liquid-

solid interface, Km
-l

h scalar factor

H specific enthalpy, JKg -

AHsi heat of fusion, JKg
1

k thermal conductivity, Jm'-ls'K 1l

P rate of heat generation per unit volume, Wm 3

q absorbed heat flux, Wm 2

Q rate of total absorbed heat, W

R interface velocity, m secI

s arc length

t time, s

T temperature, K

TO  ambient temperature, K

TM melting temperature, K

Tv  vaporization temperature, K

u coordinate axis
-l

U velocity of heat source, ms

3V volume, m

v velocity, ms
I

x,y,z cartesian coordinates
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OL thermal diffusivity (k/pC ), m2s- l

p
n~,*, oblate spheroidal coordinates

dimensionless temperature variable

dimensionless enthalpy variable

p density, Kg m 3

Subscripts

i,j,k nodal point subscripts in n and and * directions,

respectively
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iI

TABLE I

PROPERTIES OF THE

ALUMINUM SUBSTRATE

Cp* = 1067 J Kg-1 K-1 , Specific Heat

AHsk = 3.95 x 105  J Kg- 1, Latent Heat of Fusion

k** = 228 Wm-1 K 1 , Thermal Conductivity

TM = 933 K, Melting Temperature

TV = 2723 K, Vaporizati n Temperature

-3
p* = 2545 Kg m Density

= 8.4 x 10 5 m sec , Thermal Diffusivity

* Averaged from 298K to the Vaporization Temperature

** Averaged from 298K to Melting Temperature
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M~ELT ZONE

POOL SPOT
h~~~O~zrR s a U'

z

Figure 1. Schematic illustration of laser beam -substrate

geometry during rapid surface melting and solid-
ification.
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Figure 3. Temperature at the center of the liquid zone of
a semi-infinite solid substrate during surface
melting as a function of uniform absorbed heat
flux, radius of the circular region and time.
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<_oJ K = KZ = 168 qa = 4.92 x

0

<ALUMINUM

" 1.2 L-S INTERFACE
UNIFORM HEAT FLUX

T(O,O,O) = Tv
U= 0

STEADY STATE

1.6 I

Figure 4. The effect of changes in the thermal conduc-
tivities of the liquid and solid phases on the
steady state location of the liquid-solid inter-
face of an aluminum substrate subjected to a
stationary uniform absorbed heat flux q over a
circular region of radius a, In each case the
center of the circular region has reached the
vaporization temperature T .
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FRACTIONAL DISTANCE, y/a or x/a
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T(0,0,O) =TV

U= 0

2.8 _____ ______STEADY STATE

Figure 5. Steady state location of several isothermns,
including the liquid-solid interface (T=933K)
for two different products of ga.



41

FRACTIONAL DISTANCE, y/a or x/a

-2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.00qa : 3.2 x i0 W/m .,

0.40

6 

=0.8
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U = .0

STEADY STATE
2.0 I I I

Figure 6. The effect of the variable ga on the steady
state geometry and location of the liquid-
solid interface. The maximum temperature at
the center of the circular region associated
with each curve is also listed.
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U = 0
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1500

I.-
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0 0.4 0.8 1.2 1.6 2.0 2.4
FRACTIONAL DISTANCE, z/a

Figure 7. Steady state temperature distributions in the
melt pool and the solid along the z.-axis for
different values of the variable _qa.
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FRACTIONAL DISTANCE, y/a or x/a

Figure 8. Steady state radial temperature distributions
in the melt pool on the z=0 plane for different
values of the variable _qa.
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Figure 9. Quasi-steady state dimensionless temperature
distributions along the y-axis of a moving
uniforr heat flux _ absorbed over a circular
region of radius a. The velocity of the heat
source, U, is in the positive y-direction.
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FRACTIONAL DISTANCE, y/a
-3.2 -.- 16 -0.8 2200 00.8 1.6

000

0.4 - __

0.8 -_ __ ___
Lii

~2.0 -80K
-,UNIFORM HEAT FLUX

24qa = 6.4 x105 W/m__ __

24- Ua/2a = 0.75 - - __ __

2.8 I_ _

Figure 10. A side view, x =0 plane, of the location
and geometry of several isotherms, includ-
ing the liquid-solid interface.
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FRACTIONAL DISTANCE, y/a
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.4 qa =6.4 x 10' W/niU
24- Uaf2a = 0.7S

28LQUA ISI -ST IEADY 1STATEI

Figure 11 . A top view, z =0 plane, of the location and
geometry of several isotherms, including the
liquid-solid interface.
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qa = 6.4 x 10 W/m
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Figure 12. Composite side and top views of the isotherms in
an aluminum substrate subjected to stationary and
moving uniform absorbed heat fluxes over a circu-
lar region on its boundary surface. The n-n curve
connects the points of maximum temperature farthest
from the y-axis.

1.6 SIDE VIE
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Figure 13. A side view, x =0 plane, showing the effects
of changing the values of _q and Ua/2oL on the
shape and size of the molten region.
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FRACTIONAL DISTANCE, yla
-2.4 -1.6 -0.8 0 0.8 1.6
0

0.4

LiJ

0c 1.6 ALUI3U ____ ____ ___ ____ __

2.4 -- q 3x OW/
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Figure 14. A top view, z 0 plane, showing the effects
of changing the values of _qa and Ua/2ct on the
shape and size of the molten region.
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Figure 15. A side view, x =0 plane, showing the effects of
changing the values of _q and Ua/2ct on the shape
and size of the molten region.
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Figure16. A .'iew. z =0 plane, showing the effects of
crar:, 'the .,i jes of iqa and Ja-/2L, on the shape
ar- 'f (.iten veqion.
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Figure 17. Variation of the product of cooling rate at.1
the solid-liquid interface and a' with melt
depth along the trailing half of the pool in
the y = 0 plane for different values of the
independent process variables.
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Figure 78. Variation of the product of cooling rate at the
solid-liquid interface and a2 with imelt widthalong the side of the pool i-n the z = 0 plane fordifferent values of the independent process vari-
abl es.
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Figure 19. Variation of the ratio Gk/R at the solid-liquid
interface with melt dept Fialong the trailing half
of the pool in the y = 0 plane for different val-
ues of the independent process variables.
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Figure 20. Variation of the ratio GL/R at the solid-liquid
interface with the melt width along the side of
the pool in the z = 0 plane for different values
of the independent process variables.
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Figure 21. A side view, x = 0 plane, showing the effects of
changing the values of qa and Ua/2a on the shape
and size of the molten region of an aluminum sub-
strate subjected to a Gaussian heat flux moving
with constant velocity U in the positive y-direc-
tion.
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Figure 22. A top view, z 0 plane, showing the effects of
changing the values of cqa and -Ua/2a on the shape
and size of the molten region -fan aluminum sub-
strate subjected to a Gaussian heat flux moving
with constant velocity U in the positive y-direc-
tion.




